Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations.more » « lessFree, publicly-accessible full text available January 1, 2027
-
Abstract Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for the fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multifidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro-components and hence must be considered in the design process.more » « less
-
Predicting the fracture behavior of macroscale components containing microscopic porosity relies on multiscale damage models which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made due to the prohibitive computational costs associated with explicitly modeling spatially varying microstructures in a macroscopic component. To address this challenge, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on latent map Gaussian processes (LMGPs). Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we construct a multi-fidelity LMGP to inversely estimate the damage parameters of an ROM as a function of microstructure and clustering level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity.more » « less
-
Abstract Aluminum alloys are increasingly utilized as lightweight materials in the automobile industry due to their superior capability in withstanding high mechanical loads. A significant challenge impeding the large-scale use of these alloys in high-performance applications is the presence of manufacturing-induced, spatially varying porosity defects. In order to understand the impacts of these defects on the macro-mechanical properties of cast alloys, multiscale simulations are often required. In this paper, we introduce a computationally efficient reduced-order multiscale framework to simulate the behavior of metallic components containing process-induced porosity under irreversible nonlinear deformations. In our approach, we start with a data compression scheme that significantly reduces the number of unknown macroscale and microscale variables by agglomerating close-by finite element nodes into a limited number of clusters. Then, we use deflation methods to project these variables into a lower-dimensional space where the material’s elastoplastic behaviors are approximated. Finally, we solve for the unknown variables and map them back to the original, high-dimensional space. We call our method deflated clustering analysis and by comparing it to direct numerical simulations we demonstrate that it accurately captures macroscale deformations and microscopic effective responses. To illustrate the effect of microscale pores on the macroscopic response of a cast component, we conduct multi-scale simulations with spatially varying local heterogeneities that are modeled with a microstructure characterization and reconstruction algorithm.more » « less
An official website of the United States government
